博碩士論文 108329004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.118.12.222
姓名 黃婉瑜(Wan-Yu Huang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極
(Nd Doped LSCF Nanofiber as Air Electrode for Protonic Ceramic Electrochemical Cells)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響★ 多孔鎳集電層應用於三維微型固態超級電容器
★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池
★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池★ 鑭鍶鈷鐵奈米纖維/銀顆粒複合陰極應用於質子傳輸型陶瓷電化學電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 質子傳輸型陶瓷燃料電池(Protonic ceramic fuel cells, PCFCs)材料在500-800 ℃之操作溫度範圍內具有優良傳導性以及提高材料的穩定性且密封性較佳,但降低操作溫度會影響空氣電極的氧還原反應(Oxygen reduction reaction, ORR)速率。當空氣電極端使用Nd-based材料比La-based材料具有更高的氧交換率。由於Nd-based材料優異的氧交換速率,在空氣電極側可產生更快速的氧離子傳輸和氧擴散速率,藉此有效降低電化學阻抗並提升電化學性能。
在本研究中,使用NdxLa0.6-xSr0.4Co0.2Fe0.8O3-δ (x=0, 0.1, 0.2, 0.3, 0.6)奈米纖維作為PCFC的空氣電極。結果顯示,Nd摻雜LSCF電池可以有效提升性能,因Nd3+的離子半徑小於La 3+的離子半徑,導致平均A-site離子半徑改變,降低了氧遷移至空位的阻礙,使氧跳躍到氧空位所受到晶格應力減弱。
Nd0.1-LSCF電池在800°C 時的最高功率密度約為579.16 mW/cm2,比LSCF電池高 43%。歐姆電阻和極化電阻分別降低了約29% 和32%。使用Nd0.1-LSCF電池進行電解模式,空氣電極側電解水氣並於氫氣電極側產生氫氣。其法拉第電流效率達87%,能量轉換效率達85%,而產氫速率可達10.17 ml/min。
本研究結果可知,Nd0.1-LSCF奈米纖維在PCFC可以有效提升氧擴散速率與氧離子傳輸,且在800 ℃操作溫度PCFC之電化學性能表現良好具有最高功率密度579.16 mW/cm2。Nd0.1-LSCF電池成功應用於PCEC電池模式。Nd0.1-LSCF奈米纖維空氣電極提供於質子傳導型陶瓷電化學電池裝置未來發展之潛力。
摘要(英) Operation of PCFCs in the range of 500-800 °C range would enhance the durability of materials but reduce the rate of oxygen reduction reaction (ORR) at air electrode. Nd-based cathode material has higher oxygen exchange rate than La-based ones. Due to the excellent oxygen exchange rate, rapid oxygen anion transport and oxygen surface exchange can decrease electrochemical impedance when the Nd-based cathode material is used as an air electrode.
In this research, the NdxLa0.6-xSr0.4Co0.2Fe0.8O3-δ (x=0, 0.1, 0.2, 0.3, 0.6) nanofiber is used as the air electrode for PCFCs. The cell with Nd doped LSCF can effectively promote the performance. The smaller cation radius of Nd3+ than that of La3+ causes a difference in the average A-site ion radii that has a relationship with lattice strain during oxygen hopping to oxygen vacancy.
The peak power density of Nd0.1-LSCF cell under PCFC mode at 800 °C is about 579.16 mW/cm2, 43% higher than that of LSCF cell. The ohmic resistance and polarization resistance are decreased by about 29% and 32%, respectively.
When PCFC is operated under protonic ceramic electrolysis cells (PCEC) mode, water vapor is supplied to the oxygen electrode side and thus pure H2 is generated at the hydrogen electrode side. The Faraday’s efficiency (FE) of Nd0.1-LSCF cell is 87% and the energy conversion efficiency (ECE) is 85%. The hydrogen evolution rate can achieve 10.17 ml/min.
From the results of this study, the Nd0.1-LSCF nanofiber m can enhance the transmission of oxygen ions and the diffusion of oxygen in air electrode, also keeping the outstanding performance of PCFC, with a peak power density of 579.16 mW/cm2 at 800 °C. Nd0.1-LSCF cell can be successfully operated under PCEC mode. The N0.1-LSCF nanofiber air electrode provided great potential for the future development of protonic ceramic electrochemical cell device.
關鍵字(中) ★ 釹摻雜鑭鍶鈷鐵
★ 奈米纖維
★ 空氣電極
★ 氧還原反應
★ 質子傳輸型陶瓷電化學電池
關鍵字(英) ★ Nd-doped LSCF
★ nanofiber
★ air electrode
★ oxygen reduction reaction
★ protonic ceramic electrochemical cell
論文目次 摘要 VI
Abstract VIII
致謝 X
目錄 XI
圖目錄 XV
表目錄 XVIII
前言 1
第一章、實驗原理與文獻回顧 3
1.1. 質子傳輸型陶瓷燃料電池 3
1.1.1. 質子傳輸型陶瓷燃料電池之原理 3
1.1.2. 質子傳輸型陶瓷燃料電池之結構 5
1.2. 質子傳輸型陶瓷電解電池 8
1.2.1. 質子傳輸型陶瓷電解電池之原理 8
1.2.2. 質子傳輸型陶瓷電解電池之結構 9
1.3. PCFC之空氣電極材料與傳輸機制 10
1.3.1. 空氣電極種類介紹 10
1.3.2. MIEC傳輸機制 12
1.3.3. 鈣鈦礦 (Perovskite)結構及性質 13
1.3.4. A-site元素摻雜與氧原子跳躍機制之關係 14
1.4. 靜電紡絲 16
1.4.1. 靜電紡絲原理 16
1.4.2. 靜電紡絲影響參數 17
1.4.3. 奈米纖維應用於燃料電池之優勢與發展困境 19
1.5. 電解質粉末合成方法與燒結機制 20
1.5.1. PCFC電解質粉末合成方法 20
1.5.2. 粉末燒結理論 20
1.5.3. 質子傳輸機制 22
1.6. PCFC電池製備方法 23
1.6.1. 乾壓成型技術 (Dry pressing technique) 23
1.6.2. 刮刀成型技術 (Tape casting technique) 23
1.6.3. 旋轉塗佈技術 (Spin coating technique) 24
1.7. 電化學分析原理 25
1.7.1. 極化曲線 (I-V curve)之原理 25
1.7.2. 電化學交流阻抗頻譜之原理 27
1.7.3. 等效電路之簡介 29
第二章、實驗方法 32
2.1. 容忍決定因子之計算 32
2.2. 實驗藥品 33
2.3. 實驗方法與流程 34
2.3.1. 粉末合成 34
2.3.2. 刮刀成型技術製備陽極基板 35
2.3.3. 奈米纖維 (Nanofiber)製備 36
2.3.4. 單電池製備 37
2.4. 材料性質分析 38
2.4.1. X光粉末繞射儀 38
2.4.2. 掃描式電子顯微鏡 (Scanning electron microscopy, SEM) 39
2.4.3. 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM)
40
2.5. 單電池 I-V 性能量測 40
2.6. 電化學交流阻抗分析 41
第三章、結果與討論
42
3.1. 材料相分析 42
3.1.1. 煆燒電解質粉末之相分析 42
3.1.2. 奈米纖維材料之相分析 43
3.2. 微結構分析 46
3.2.1. 釹摻雜鑭鍶鈷鐵奈米纖維之表面結構分析 46
3.2.2. 釹摻雜鑭鍶鈷鐵空氣電極之橫截面結構分析 49
3.3. 單電池 I-V 性能曲線測量與分析 52
3.4. 單電池之 EIS測量與分析 54
3.5. 單電池之長時間性能穩定性分析 57
3.6. 單電池之電解電流與法拉第效率 58
第四章、結論 62
參考文獻 63
參考文獻 [1] H. I. Ji, J.H. Lee, J.W. Son, K.J. Yoon, S. Yang, B.K. Kim, “Protonic ceramic electrolysis cells for fuel production: a brief review”, Journal of the Korean Ceramic Society, Vol. 57, pp. 480-494, (2020).
[2] A. Pandiyan, A. Uthayakumar, R. Subrayan, S.W. Cha, S.B. Krishna Moorthy, “Review of solid oxide electrolysis cells: a clean energy strategy for hydrogen generation”, Nanomaterials and Energy, Vol. 8, pp. 2-22, (2019).
[3] S.Y. Gómez, D. Hotza, “Current developments in reversible solid oxide fuel cells”, Renewable and Sustainable Energy Reviews, Vol. 61, pp. 155–174, (2016).
[4] A.V. Nikonov, K.A. Kuterbekov, K.Z. Bekmyrza, N.B. Pavzderin, “A brief review of conductivity and thermal expansion of perovskite-related oxides for SOFC cathode”, Eurasian Journal of Physics and Functional Materials, Vol. 2, pp. 274-292, (2018).
[5] K. Karuppiah, A.M. Ashok, “Review of proton-and oxide-ion-conducting perovskite materials for SOFC applications”, pp. 52-58 ,(2019).
[6] S. Hossain, A.M. Abdalla, S.N.B. Jamain, J.H. Zaini, A.K. Azad, “A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells”, Renewable and Sustainable Energy Reviews, Vol. 79, pp. 750-764, (2017).
[7] N.L.R.M. Rashid, A.A. Samat, A.A. Jais, M.R. Somalu, A. Muchtar, N.A. Baharuddin, W.N.R.W. Isahak, “Review on zirconate-cerate-based electrolytes for proton-conducting solid oxide fuel cell”, Ceramics International, Vol. 45, pp. 6605-6615, (2019).
[8] K. Kreuer, “Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides”, Solid State Ionics, Vol. 125, pp. 285-302, (1999).
[9] F. He, M. Liang, W. Wang, R. Ran, G. Yang, W. Zhou, Z. Shao, “High-Performance Proton-Conducting Fuel Cell with B-Site-Deficient Perovskites for All Cell Components”, Energy & Fuels, Vol. 34, pp. 11464-11471, (2020).
[10] W. Wang, D. Medvedev, Z. Shao, “Gas Humidification Impact on the Properties and Performance of Perovskite‐Type Functional Materials in Proton‐Conducting Solid Oxide Cells”, Advanced Functional Materials, Vol. 28, pp. 1802592, (2018).
[11] M.R. Somalu, N.W. Norman, A. Muchtar, “ A short review on the proton conducting electrolytes for solid oxide fuel cell applications”, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, Vol. 52, pp. 115-122, (2018).
[12] L. Bi, E.H. Da′as, S.P. Shafi, “Proton-conducting solid oxide fuel cell (SOFC) with Y-doped BaZrO3 electrolyte”, Electrochemistry Communications, Vol. 80, pp. 20-23, (2017).
[13] M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, E.D. Bartolomeo, “Influence of the ratio between Ni and BaCe0.9Y0.1O3-δ on microstructural and electrical properties of proton conducting Ni-BaCe0.9Y0.1O3-δ anodes”, Journal of Alloys and Compounds, Vol. 509, pp. 1157-1162, (2011).
[14] B.H. Rainwater, M.F. Liu, M.L. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, International Journal of Hydrogen Energy, Vol. 37, pp. 18342-18348, (2012).
[15] L. Bi, E. Fabbri, E. Traversa, “Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs)”, Electrochemistry Communications, Vol. 16, pp. 37-40, (2012).
[16] K. Xie, R.Q. Yan, X.Q. Liu, “A novel anode supported BaCe0.4Zr0.3Sn0.1Y0.2O3-δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry Communications, Vol. 11, pp. 1618-1622, (2009).
[17] H. Moon, S.D. Kim, E.W. Park, S.H. Hyun, H.S. Kim, “Characteristics of SOFC single cells with anode active layer via tape casting and cofiring”, International Journal of Hydrogen Energy, Vol. 33, pp. 2826-2833, (2008).
[18] Z.H. Chen, R. Ran, W. Zhou, Z.P. Shao, S.M. Liu, “Assessment of Ba0.5Sr0.5Co1-yFeyO3-δ (y=0.0-1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane”, Electrochimica Acta, Vol. 52, pp. 7343-7351, (2007).
[19] C.A.J. Fisher, M. Yoshiya, Y. Iwamoto, J. Ishii, M. Asanuma, K. Yabuta, “Oxide ion diffusion in perovskite-structured Ba1-xSrxCo1-yFeyO2.5: a molecular dynamics study”, Solid State Ionics, Vol. 177, pp. 3425-3431, (2007).
[20] W. Zhou, R. Ran, Z.P. Shao, R. Cai, W.Q. Jin, N.P. Xu, J.M. Ahn, “Electrochemical performanc of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathodes prepared via electroless deposition”, Electrochimica Acta, Vol. 53, pp. 4370-4380, (2008).
[21] B. Wei, Z. Lü, X.Q. Huang, J.P. Miao, X.Q. Sha, X.S. Xin, W.H. Su, “Crystal structure, thermal expansion and electrical conductivity of perovskite oxides BaxSr1-xCo0.8Fe0.2O3-δ (0.3 ≤ x ≤ 0.7)”, Journal of the European Ceramic Society, Vol. 26, pp. 2827-2832, (2006).
[22] T. Takahashi, H. Iwahara, “Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell”, Energy Conversion, Vol. 11, pp. 105-111, (1971).
[23] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara,“Protonic conduction in Zr substituted BaCeO3”, Solid State Ionics, Vol. 138, pp. 91-98, (2000).
[24] E. Traversa, E. Fabbri, “Proton conducting for solid oxide fuel cells (SOFCs)”, Functional Materials for Sustainable Energy Applications.
[25] H.I. Ji, J.H. Lee, J.W. Son, K.J. Yoon, S. Yang, B.K. Kim, “Protonic ceramic electrolysis cells for fuel production: a brief review”, Journal of the Korean Ceramic Society, Vol. 57, pp. 480-494, (2020).
[26] P. A. Stuart, T. Unno, J. A. Kilner, S. J. Skinner, “Solid oxide proton conducting steam electrolysers”, Solid State Ionics, Vol. 179, pp. 1120-1124, (2008).
[27] F. He, D. Song, R. Peng, G. Meng, S. Yang, “Electrode performance and analysis of reversible solid oxide fuel cells with proton conducting electrolyte of BaCe0.5Zr0.3Y0.2O3−δ”, Journal of Power Sources, Vol. 195, pp. 3359-3364, (2010).
[28] L. Bi, S.P. Shafi, E. Traversa, “Y-doped BaZrO3 as a chemically stable electrolyte for proton-conducting solid oxide electrolysis cells (SOECs)”, Journal of Materials Chemistry A, Vol. 3, pp. 5815-5819, (2015).
[29] J. Lyagaeva, N. Danilov, G. Vdovin, J. Bu, D. Medvedev, A. Demin, P. Tsiakaras, “A new Dy-doped BaCeO3-BaZrO3 proton-conducting material as a promising electrolyte for reversible solid oxide fuel cells”, Journal of Materials Chemistry A, Vol. 4, pp. 15390-15399, (2016).
[30] X.F. Ye, Y.B. Wen, S.J. Yang, Y. Lu, W.H. Luo, Z.Y. Wen, J.B. Meng, “Studyof CaZr0.9In0.1O3-δ based reversible solid oxide cells with tubular electrode supported structure”, International Journal of Hydrogen Energy, Vol. 42, pp. 23189-23197, (2017).
[31] N. Danilov, J. Lyagaeva, G. Vdovin, E. Pikalova, D. Medvedev, “Electricity/hydrogen conversion by the means of a protonic ceramic electrolysis cell with Nd2NiO4+δ-based oxygen electrode”, Energy Conversion and Management, Vol. 172, pp. 129-137, (2018).
[32] S. Yang, Y. Lu, Q. Wang, C. Sun, X. Ye, Z. Wen, “Effects of porous support microstructure enabled by the carbon microsphere pore former on the performance of proton-conducting reversible solid oxide cells”, International Journal of Hydrogen Energy, Vol. 43, pp. 20050-20058. (2018).
[33] Y. Zhang, R. Knibbe, J. Sunarso, Y. Zhong, W. Zhou, Z. Shao, Z. Zhu, “Recent progress on advanced materials for solid‐oxide fuel cells operating below 500 °C”, Advanced Materials, Vol. 29, pp.170132-170160, (2017).
[34] P. Kaur, K. Singh, “Review of perovskite-structure related cathode materials for solid oxide fuel cells. Ceramics International”, Vol. 46, pp. 5521-5535, (2020).
[35] R.R. Peng, T.Z. Wu, W. Liu, X.Q. Liu, G.Y. Meng, “Cathode processes and materials for solid oxide fuel cells with proton conductors as electrolytes”, Journal of Materials Chemistry, Vol. 20, pp. 6218-6225, (2010).
[36] T. Takahashi, H. Iwahara, “Ionic conduction in perovskite-type oxide solid solution and its application to the solid electrolyte fuel cell”, Energy Conversion, Vol. 11, pp. 105-111, (1971).
[37] M.S. Islam, “Ionic transport in ABO3 perovskite oxides: a computer modelling tour”, Journal of Materials chemistry, Vol. 10, pp. 1027-1038,(2000).
[38] M.A. Tamimi, A.C. Tomkiewicz, A. Huq, S. McIntosh, “On the link between bulk and surface properties of mixed ion electron conducting materials Ln0.5Sr0.5Co0.8Fe0.2O3-δ (Ln=La, Pr, Nd)”, Journal of Materials Chemistry A, Vol. 2, pp. 18838-18847, (2014).
[39] J. Xue, T. Wu, Y. Dai, Y. Xia, “Electrospinning and electrospun nanofibers: Methods, materials, and applications”, Chemical reviews, Vol. 119, pp. 5298-5415, (2019).
[40] S.T. Aruna, L.S. Balaji, S. Senthil Kumar, B. Shri Prakash, “Electrospinning in solid oxide fuel cells - a review”, Renewable and Sustainable Energy Reviews, Vol. 67, pp. 673-682, (2017).
[41] A. Aytimur, S. Kocyigit, I. Uslu, “Calcia stabilized ceria doped zirconia nanocrystalline ceramic”, Journal of Inorganic and Organometallic Polymers and Materials, Vol. 24, pp. 927-932, (2014).
[42] K. Świerczek, W. Skubida, Optimization of proton conductors for application in solid oxide fuel cell technology”, E3S Web of Conferences, Vol. 14, pp. 01044, (2017).
[43] M. Cherry, M.S. Islam, J.D. Gale, C.R.A. Catlow, “Computational Studies of Protons in Perovskite-Structured Oxides”, The Journal of Physical Chemistry, Vol. 99, pp. 14614-14618, (1995).
[44] X. Zhu, Z. Lü, B. Wei, X. Huang, Y. Zhang, W. Su, “A symmetrical solid oxide fuel cell prepared by dry-pressing and impregnating methods”, Journal of Power Sources, Vol. 196, pp. 729-733, (2011).
[45] M. Jabbari, R. Bulatova, A.I.Y. Tok, C.R.H. Bahl, E. Mitsoulis, J.H. Hattel, “Ceramic tape casting: a review of current methods and trends with emphasis on rheological behaviour and flow analysis”, Materials Science and Engineering: B, Vol. 212, pp. 39-61, (2016).
[46] J.M. Serra, W.A. Meulenberg, “Thin‐film proton BaZr0.85Y0.15O3 conducting electrolytes: toward an intermediate‐temperature solid oxide fuel cell alternative”, Journal of the American Ceramic Society, Vol. 90, pp. 2082-2089, (2007).
[47] N.Y. Hsu, S.C. Yen, K.T. Jeng, C.C. Chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives”, Journal Power Sources, Vol. 161, pp. 232, (2006).
[48] N. Sekar, P. Ramasamy, “Electrochemical impedance spectroscopy for microbial fuel cell characterization”, J. Microb. Biochem. Technol, Vol. 6.2, (2013).
[49] C. Torres-Garibay, D. Kovar, A. Manthiram, “Ln0.6Sr0.4Co1−yFeyO3-δ (Ln=La and Nd; y= 0 and 0.5) cathodes with thin yttria-stabilized zirconia electrolytes for intermediate temperature solid oxide fuel cells”, Journal of power Sources, Vol. 187, pp. 480-486, (2009).
[50] K.T. Lee, A. Manthiram, “Comparison of Ln0.6Sr0.4CoO3−δ (Ln= La, Pr, Nd, Sm, and Gd) as cathode materials for intermediate temperature solid oxide fuel cells”, Journal of the Electrochemical Society, Vol. 153, A794, (2006).
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2021-8-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明